Secrets of the Honey Bee Bite Revealed: A Previously Unknown Honey Bee Defense Weapon Against Varroa and a Potential New Natural Anesthetic for Humans

Researchers have discovered that honey bees can bite as well as sting and that the bite contains a natural anesthetic. The anesthetic may not only help honey bees fend off pests such as wax moth and the parasitic varroa mite, but it also has great potential for use in human medicine.

The surprise findings discovered by a team of researchers from Greek and French organizations in collaboration with Vita (Europe) Ltd, the UK-based honeybee health specialist, will cause a complete re-thinking of honey bee defense mechanisms and could lead to the production of a natural, low toxicity local anesthetic for humans and animals.

The natural anesthetic that has been discovered in the bite of the honey bee and measured at the University of Athens is 2-heptanone (2-H), a natural compound found in many foods and also secreted by certain insects, but never before understood to have anesthetic properties. Independent tests have verified Vita’s findings and the potential of 2-heptanone as a local anesthetic.

As a naturally-occurring substance with a lower toxicity than conventional anesthetics, 2-heptanone shows great potential. Vita has already patented the compound for use as a local anesthetic and is seeking pharmaceutical partners to develop it further.

Until recently, research seemed to indicate that 2-heptanone was either a honeybee alarm pheromone that triggers defensive responses, or a chemical marker signalling to other foraging bees that a flower had already been visited. Vita’s results contradicted these notions.

The new research clearly shows that 2-heptanone paralyses small insects and mites bitten by bees for up to nine minutes. Somewhat like a snake, the honey bee uses its mandibles to bite its enemy and then secretes 2-heptanone into the wound to anesthetize it. This enables the honey bee to eject the enemy from the hive and is a particularly effective defense against pests, such as wax moth larvae and varroa mites, which are too small to sting.

Dr. Max Watkins, Technical Director of Vita (Europe) Ltd, said, “We are very excited about our findings on at least two levels. Firstly, the revelation that honey bees can bite enemies that they cannot sting confounds some existing ideas and adds significantly to our biological knowledge. Secondly, the discovery of a highly effective natural anesthetic with huge potential will be of great interest to the pharmaceutical industry eager to develop better local anesthetics.”

In laboratory neurophysiological trials in the School of Biology of Aristotle University of Thessaloniki (Greece), 2-heptanone was found to have a similar mode of action to Lidocaine, the dominant local anesthetic used in humans and other mammals. 2-heptanone is found naturally in many foods such as beer and white bread and is so safe that it is permitted as a food additive by USA regulatory authorities. 2-heptanone therefore offers considerable potential as an alternative to Lidocaine. Very recent laboratory research using mammalian cells in the USA, has confirmed Vita’s expectations that the anesthetic could be as effective on humans and mammals as it is on insects and mites.

In considering the biological impacts of the findings, Dr. Alexandros Papachristoforou, a Vita researcher working under the supervision of Professor G Theophilidis in the Aristotle University of Thessaloniki in Greece, said: “It is amazing that this second line of honey bee defense has gone undetected for so long. Beekeepers will be very surprised by our discovery and it is likely to cause a radical rethink of some long-held beliefs. It will probably stimulate honey bee research in many new directions. For instance, many beekeepers have spoken of the ‘grooming’ behavior of honey bees in helping to control varroa populations. This grooming behavior can now be interpreted as biting behavior.”

Dr. Papachristoforou described how the unexpected properties of 2-heptanone were discovered: “We were investigating wax moth control. Wax moths are a serious honey bee pest whose larvae consume wax and pollen, often completely destroying honeycomb. When exposed to 2-heptanone, which is produced naturally by honey bees, the wax moths appeared to die. However, on closer inspection, we realized that the wax moths were merely anesthetized for a period of one to nine minutes. This was quite unexpected, so our scientific team set up a series of rigorous experiments to find out what was really happening and came up with our remarkable discovery.”

The research has just been published in the peer-reviewed journal, PLOS ONE: http://dx.plos.org/10.1371/journal.pone.0047432

Several organizations contributed to the research in collaboration with Vita (Europe) Ltd: the Aristotle University of Thessaloniki in Greece, the French Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Cyprus University of Technology, and the University of Athens.